
Dsp.rack: Laptop-based modular, programmable digital
signal processing and mixing for live performance

William Kleinsasser
Towson University

Department of Music
8000 York Road

Baltimore, MD 21252 USA
wkleinsasser@towson.edu

ABSTRACT
This is a demo of software for live signal processing using a model of signal modules, recording buffers, and file playback systems
interconnected through a programmable matrix within the Max/MSP environment.

KEYWORDS
Digital signal processing, Max/MSP, computer music
performance, matrix routing, programmable live processing.

1. INTRODUCTION
Dsp.rack is a suite of tools that runs in Max/MSP on a
Macintosh Powerbook or iBook with 500 mHz or faster cpu.
Dsp.rack was designed to model the familiar paradigm of
mixer, patch bay, and signal processor rig that became a
popular approach to integrating electronic music with live
performance during the 1980s and 1990s. Dsp.rack has been
developed to take advantage of the familiarity of this
paradigm, the decades of performance practice related to it,

and the processing speeds of the latest computers. With the
relative ease of expandability offered by a software-based
system, Dsp.rack integrates the functions of programmable
mixing, routing, and processing of audio along with the ability
to play overlaid, pre-recorded sound files. Dsp.rack was
created with the intention of offering an entry point to
composers, performers, students, and teachers as a set of tools
that are relatively familiar, flexible, and open-ended.

Figure 1. dsp.rack screens

2. THE MODEL

To date, Dsp.rack has undergone two stages of development
resulting in two versions which offer beginning and more
advanced environments for live signal processing. Dsp.rack
version 1 uses a menu-driven crossbar method for routing
signals. This version offers a flexible and simple approach to
integrating signal input, routing, processing, mixing, and
output. Version 2 uses the signal routing matrix objects in
Max/MSP which allow for more complex and flexible
combinations of signal routings but at the cost of processor
load, visual feedback, and ease of learning curve. Having been
developed in Max/MSP, Dsp.rack benefits from the open
sharing of resources that is part of that environment.

In the spirit of technological ecology, Dsp.rack offers many of
the functions of hardware processing and mixing devices but
integrates these within a software environment that can

be extended and updated without the need to purchase new
equipment and is open to the creative additions of each user. It
uses commonly-understood models which the intention of
easing the learning burden for new users and those new to the
field.
A basic set of processing modules is included with the
distribution of Dsp.rack and a mini-tutorial on integrating
user-designed additional modules is provided. The mixer and
patch bay are fully extendable only limited by screen
saturation and processing speed of the computer.
Running on a Powerbook with a multi-channel adc/dac i/o
converter like the RME Hammerfall, Dsp.rack can support
eight or more independent input and output channels. This
makes Dsp.rack capable of instrumental ensemble processing
with multi-channel output.

Figure 2. dsp.rack block diagram

3. INS AND OUTS

Dsp.rack supports eight channel input and output. The i/o can
be easily modified for fewer than eight channels and with the

required i/o hardware, the i/o can be extended to support up to
24 input and output channels. There is a module for playing a
pre-recorded sound files as the input source so that Dsp.rack
can be used as a studio processor to process recorded files as
well as live input.

4. RACK: THE PROCESSING MODULE WINDOW

The RACK window contains the signal processor modules as
well as a buffer module that records input to a memory buffer
that can be played with access to segment locations, direction,
and speed. Version 2 adds a module for VST plug-ins which
uses an automatically loaded menu for listing of all VST plug-
ins that are in the VstPlugIns folder inside the Max/MSP
folder. Additional processing modules can be created and
added by the user. Included in the processor rack window is a

tutorial module to show how to add user-designed dsp
processes to the rack.
The processing rack window can be filled with the processors
needed for a given work and all of the settings for each
module, mixer and routing definition can be stored as presets
and recalled in coordination from a master preset change
object in the main window.

Figure 3. RACK of processors, details of the transposition module, and the user-expansion tutorial module

5. DSP PATCHBAY: ASSIGNMENT OF THE PROCESSING MODULES SIGNAL FLOW

The DSP PATCHBAY window allows for programmable
assignments of the inputs to the mixer channel strips. In
Version 1, pop-down menus are used to assign the input source
for each mixer channel. The number of assignment

modules can be extended by duplicating the modules as
needed. Additional mixer channel strips can be added to the
mixer to accommodate more than 16 input assignments.

Figure 4. Version 1 DSP PATCHBAY with menu-driven routing

The menus that control the input routing for the mixer
channels are easily modified and extended. Using a message
box that feeds all of the mixer input routing menus, the list of
input assignments can be updated with a click of the mouse.

In version 2, the menu-driven signal routing is replaced with
Max/MSP’s matrix~ object supporting multiple overlapping
signal flow possibilities. DSP modules can now send to and
receive from any combination of the other modules
simultaneously through the nodes of the matrix~ and matrixctrl
objects in the patch bay windows.

Figure 5. Version 2 matrix-driven routing

6. MIXER: PROGRAMMABLE MIXING AND OUTPUT ROUTING

Figure 6. Version 1 MIXER with menu-driven channel inputs and output assignments

The output routing for each channel strip is handled with
programmable assignments using a pop-down menus for target
inputs. This design allows for easy reconfiguration of the
entire routing matrix on a preset-by-preset basis. Dsp.rack has
a mixer that can be extended by simply duplicating the mixer
channel strip objects as described in the mixer window.
A programmable fader transition time avoids sudden level
changes associated with programmed preset changes. Using
the slew setting for the audio faders, the gain settings for
faders can change gradually over a user-defined time interval.
The inputs for the mixer channels are handled using the same

approach. Each of the matrix node configurations can be
stored as a preset and recalled in sync with all of the other
presets from the main window. Additional matrix nodes can
be added by the user.
In version 2 the mixer strips are routed to the eight output
channels for the adc~ object using menus. This means that
mix level of the signal output for each dsp module must be set
in the programmable fader settings within each dsp module
and not in the mixer. In version 2 the mixer can be is the final
level control for the output of each dsp chain.

Figures 7. matrix routing for inputs and processing modules

7. INTEGRATED SIGNAL PROCESSING
AND PRE-RECORDED SOUND FILE
PLAYBACK

The performer+tape paradigm that flourished from 1960-1990
offered a model of musical expression that expanded the
capabilities of acoustic music into the electronic studio
environment. Composers produced a body of works that
presented acoustic performance in the context of
technologically transformed music on tape.
But the synchronization issues of performer+tape music can be
a major drawback in these works. Dsp.rack is designed to

support live interactive signal processing but it also can
support the repertoire of performer+tape compositions by
retaining the ability to present pre-recorded, overlapping sound
files supporting a method of presenting pre-recorded sound
files as overlaid layers which allows for timing flexibility in
performance. Dsp.rack offers a module for loading and
playing sound files with up to four overlapping multi-channel
players. These sound files can either be routed directly out to
the sound system, or following the general crossbar approach,
can be routed to the inputs of the other processing modules.
A patch is provided that shows how to dub 8-channel files in
from TDIF, ADAT MTRs or similar external sources.

8. PERFORMANCE AND CPU LOAD

While relatively long latency presents a problem when using
the Macintosh’s Sound Manager for i/o, using a converter like
the RME Hammerfall reduces latency. With several complex
dsp modules, an 8-channel mixer, and 8-channel i/o,
Dsp.rack uses about 35% of the cpu on a 1G G4 Powerbook.
The same setup uses about 75% of a 500 mHz G3 Powerbook.
Dsp.rack uses the mute object for enabling and disabling each
individual dsp module which is useful for processing-intensive
modules but less so for lighter load modules.

Dsp.rack is distributed as freeware that runs within the
Max/MSP environment. It provides a relatively inexpensive
path to familiar, personally expandable tools for integrating
computer music with live performance. Dsp.rack has been
designed to offer the benefits of relatively easy start-up and
open-ended potential for refinement and growth. It is hoped
that this will prove attractive to composers, performers,
students, and those who teach others to engage this field.

9. ACKNOWLEDGEMENTS

The audio processing contained in this distribution of Dsp.rack
is based on standard-issue Max/MSP objects with the exception
of the tap.shift pitch shifting object which is distributed with
Dsp.rack by permission from its programmer, Timothy Place,
and the Newverb~ object by Richard Dudas which is available
as a public domain reverb object from the Cycling74 web page
of shared objects. Tap.shift is distribued with dsp.rack with a
free-use license for this application so long as no fee is collected
for its use and so long as the ReadMe document associated with
it is included in the distribution.
The following work by Max/MSP developers are acknowledged
as having been of great use in the development of Dsp.rack: Erik
Oña and Cort Lippe offered models for the main “crossbar”
mixing method using menu-driven routing.

Chris Dobrian and Cort Lippe offered help on the buffer writing
method and other audio handling. The sound file playback and
delay methods were developed in order to help, and deriving
help from, my students Brian Comotto, Daniel Hope, Scott
Leake, Ljiljana Jovanovic, and Nicholas Schoeb. Scott Leake
also helped a great deal with the troubleshooting phase and
development of the VST plug-in module in version 2. Thanks to
Miller Puckette and David Zicarelli for developing Max and
Max/MSP. Thanks also to all of the Max/MSP developers who
have shared their solutions and ideas

10. REFERENCES

[1] Dobrian, C. Programming New real-time DSP Possibilities
with MSP, Proceedings of the 2nd COST G-6 Workshop on
Digital Audio Effects (DAFx99), NTNU, Trondheim,
December 9-11, 1999

[2] Lippe, C. A Look at Performer/Machine Interaction Using
Real-time Systems, Proceedings of the International
Computer Music Conference, Hong Kong, 1996

[3] Lippe, C. A Composition for Clarinet and real-time Signal
Processing: Using Max on the IRCAM Signal Processing
Workstation, Proceedings of the 10th Italian Colloquium
on Computer Music, Milan, 1993

[4] Lippe, C. Music for Piano and Computer: A Description,
Information Processing Society of Japan SIG Notes,
Volume 97, Number 122, 1997

[5] Place, T. Silicon Prairie Intermedia,
http://www.sp-intermedia.com/downloads/index.html

[6] Puckette, M. New Public-Domain Realizations of Standard
Pieces for Instruments and Live Electronics, Proceedings,
International Computer MusicConference, 2001

[7] Puckette, M. Pure Data; Recent Progress, Proceedings, Third
Intercollege Computer Music Festival, Tokyo, Japan, 1997

[8] Rowe, R. Interactive Music Systems: Machine Listening
and Composing, The MIT Press, Cambridge, 1993

[9] Zicarelli, D. An Extensible Real-Time Signal Processing
Envirnoment for Max, Proceedings of the International
Computer Music Conference, Ann Arbor, 1998

